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We find the threshold and the generation angle for transverse instability of quasi-phase-matched counter-
propagating fundamental and second-harmonic beams in a bulk x s2d medium. Numerical estimates indicate
that the instability should be observable with currently available materials.  1998 Optical Society of America
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Pattern formation is an active topic in nonlinear
optics. Early theoretical investigations demonstrated
that cross-phase modulation between counterpropagat-
ing beams in media with cubic nonlinearity leads to
cooperative, absolute instability1 – 3 and to the forma-
tion of spatial patterns.4 This instability was first
observed with counterpropagating beams in a bulk
medium.5 Concurrent work revealed similar phenom-
ena in optical cavities containing a passive nonlinear
medium.6 – 8 The cavity geometry is intrinsically more
complex owing to the interplay of linear and nonlinear
resonances, which leads to new features, such as pat-
tern formation in the presence of nonlinear loss.9

In the past few years pattern formation in paramet-
ric x s2d media with a nonlinear polarization that is a
quadratic function of the optical fields was investigated
extensively.10 – 13 Convective modulational instability
was observed in a forward-propagating traveling-wave
interaction.14 To generate patterns it is necessary to
provide feedback such that the system exhibits an ab-
solute instability. One way of introducing feedback
is to allow the interacting beams to counterpropagate.
Although backward parametric interactions were pro-
posed in the 1960’s,15 there is not sufficient birefrin-
gence in available materials for phase matching of a
fundamental wave E1 at frequency v1 with a counter-
propagating second harmonic E2 at frequency v2 ­
2v1. Studies of pattern formation in quadratic me-
dia to date have therefore been based on mean-field
analysis of an intracavity geometry in which the cav-
ity provides the feedback necessary for an absolute
instability.10 – 13

In this Letter we present a study of transverse insta-
bility in a bulk quadratic medium of length L without
a cavity, with the geometry shown in Fig. 1. The ab-
sence of cavity effects allows the transverse instability
to be studied in a more basic form. To provide the
necessary coupling between counterpropagating beams
we consider a backward quasi-phase-matched inter-
action16,17 in a periodically poled material with a non-
linear susceptibility of the form x s2d ­ 2e0dm cos kmz,
where e0 is the vacuum permittivity and dm is the
effective value of the quadratic susceptibility tensor.
0146-9592/98/211650-03$15.00/0
When km . k2 1 2k1, where ki ­ viniyc (ni is the
refractive index of field Ei and c is the speed of
light in vacuum), a forward-propagating beam at v1
couples to a backward-propagating beam at v2. As
was suggested in Ref. 17, transverse instabilities can
be excited in this geometry. When the counterpropa-
gating pump beams have equal intensities, we find a
simple dispersion relation that describes the presence
of an absolute instability for nonzero phase mismatch
sDk ­ 2k1 1 k2 2 km fi 0d. Quasi-phase matching
relaxes restrictions on the choice of wavelength
and allows access to the largest components of the
electro-optic tensor in a given material. As we show
below, threshold powers for observation of the trans-
verse instability by use of, for example, periodically
poled LiNbO3 are in the range of a few megawatts and
are thus accessible with pulsed lasers.

Counterpropagation of a fundamental field E1 ­
sE1y2dexpfisk1z 2 v1tdg 1 c.c. and its second harmonic
E2 ­ sE2y2dexpfis2k2z 2 2v1tdg 1 c.c. is described by
the setµ
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Fig. 1. Interaction of counterpropagating fundamental E1
and second harmonic E2, which are beams in a x s2d medium
poled with period Lm. Spatial sidebands of amplitude f6

and b6 are generated inside the medium.
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where ='
2 operates on the transverse coordinates r ­

sx, yd. Before proceeding it is convenient to rewrite
Eqs. (1) in the scaled dimensionless formµ
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where we have made the substitutions E1 ­
s2cn1yv1dmLdA1, E2 ­ 2is2cn1yv1dmLdA2 expsiDkzd,
t ! sn1Lycdt, z ! Lz, r !

p
Ly2k1 r, b ­ DkL, and

n2 ø n1.
Equations (2) have stationary plane-wave solutions

A1 ­ a1 expsia2zd , (3a)

A2 ­ ia2 exps2ia2zd , (3b)

with real amplitudes a1 and a2 and positive a1. Solu-
tions (3) exist provided that the phase mismatch takes
the value b ­ 2f2a2 1 sa1

2ya2dg.
We then look for modulational instability, using the

ansatz

A1 ­ A1f1 1 f1szdexpsik' ? rd 1 f2szd

3 exps2ik' ? rdgexpsntd , (4a)

A2 ­ A2f1 1 b1szdexpsik' ? rd 1 b2szd

3 exps2ik' ? rdgexpsntd , (4b)

where 6k' is the transverse wave vector of the side-
bands in scaled dimensionless form. Linearization of
Eqs. (2) in the amplitudes of the sidebands f6 and b6

gives the setµ
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where kd ­ k'
2. Equations (5) together with the

boundary conditions

f6s0d ­ b6s1d ­ 0 (6)

form a well-posed boundary-value problem for the
eigenvalue n, which is the instability growth rate of the
sidebands. The solvability condition for the boundary-
value problem defined by Eqs. (5) and (6), subject to
the requirement that Resnd ­ 0, gives an equation for
the instability threshold. For general values of the
parameters of the problem the resulting expression
is cumbersome. In the restricted case of ground-
state amplitudes with equal moduli a1 ­ 6a2, and
assuming further that at threshold the sidebands are
not frequency shifted with respect to the ground state
fImsnd ­ 0g, we find a compact form for the threshold
condition:
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The dashed curve in Fig. 2 shows a2 as a function
of kd found by solution of Eq. (7) for the lowest branch
of the transverse instability threshold. The minimum
threshold a2 . 1.94 occurs for kd . 2.79. Note that in
addition to the threshold curve shown in Fig. 2 other
solutions of Eq. (7) exist that correspond to higher-
lying threshold curves. For negative a2 Eq. (7) has no
solutions. Note that in the cascading limit of large
b Eq. (2b) reduces to A2 ­ 2siybdA1

2, which allows
Eqs. (2) to be rewritten as a single equation for A1
with an effective cubic nonlinearity that takes the form
2siybd jA1j2A1. The nonlinearity is self-focusing for
a2 positive and self-defocusing for a2 negative. We can
thus state that modulational instability without fre-
quency shifts occurs only under conditions correspond-
ing to a self-focusing nonlinearity.

To verify that the analytic solution obtained for
Imsnd ­ 0 corresponds to the lowest threshold, we
solved Eqs. (5) and (6) numerically for a2 ­ 6a1 and
arbitrary complex n. It turns out that for a2 . 0
and kd , 4.61 solution of Eq. (7) gives the lowest
instability threshold. At a2 . 3.26 and kd . 4.61
a bifurcation occurs, and for larger kd the lowest
instability threshold is obtained in the presence of
frequency detuning fImsnd fi 0g, as shown by the solid
and the dotted curves in Fig. 2.

Fig. 2. Pump amplitude a2 and frequency shifts Imsnd at
the threshold for transverse instability. The dashed curve
is a2 found from Eq. (7), and the solid and dotted curves are
a2 and Imsnd, respectively, found from numerical solution of
Eqs. (5) and (6).
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For a2 , 0 all solutions were found numerically
from Eqs. (5) and (6), and they are accompanied by
frequency shifts as shown in Fig. 2. The lowest insta-
bility threshold occurs on the solution branch shown
in Fig. 2 at a2 . 21.68 and kd . 2.28. Additional
branches with higher thresholds are not shown in the
figure, although they cross the depicted branch at sev-
eral places for kd & 0.7. Note that for both signs of a2
the solution branches are duplicated since the sign of
Imsnd is arbitrary.

It is of interest to estimate the pump power that
is necessary for experimental observation of trans-
verse instability. The pump-beam irradiance is given
by I ­ s2e0c3n1

3yv1
2dm

2L2da1
2 in watts per meter

squared. The characteristic transverse spatial scale
of the instability is L ­ 2psLy2k1kdd1/2. Assuming a
Gaussian-type pump beam and defining the ratio of
the Gaussian beam diameter dg to the spatial scale L

by m ­ dgyL, we find an expression for the required
pump power P ­ sp3m2cLy4n1v1kddI . Note that m
cannot be too small, since that would imply that the
generated sidebands do not overlap spatially with the
pump beams over the length L of the crystal. Simple
geometrical arguments lead to the approximate re-
quirement that m . s2ypdkd. Although the minimum
instability threshold found in Fig. 2 occurs at ja2j .
1.7, it is accompanied by frequency shifts that can com-
plicate experimental observations. We therefore ob-
tain our estimate on the basis of the slightly higher
threshold at kd . 2.7 and a1 ­ a2 . 1.9. Assum-
ing m ­ 5, a pump wavelength of 1.06 mm, a crystal
length of 1 cm, n1 ­ 2.2, and dm , 30 pmyV , which
corresponds to LiNbO3, we find I , 6.4 MWycm2,
L , 75 mm, and P , 3.5 kW. This level of pump
power is readily available with a nanosecond-pulsed
Nd:YAG laser. Note that in the scheme considered
here the same pump intensity must be provided at both
the fundamental and the second-harmonic frequencies.

Currently available poling techniques cannot,
however, meet the requirement that Lm ­ 2py
km , 120 nm. An alternative is to quasi-phase match
the beams to a high order of a longer-period pol-
ing. This technique was used recently in an experi-
mental demonstration of backward second-harmonic
generation.18 For square-shaped modulation of the
nonlinear coefficient the effective nonlinearity is
dm, eff ­ s4ypddmyp, where p is the order of the phase
matching. A realizable poling period of 3.5 mm
gives p ­ 29, P , 1.8 MW, and peak irradiance
I , 3.3 GWycm2; these values are still well below
damage thresholds for LiNbO3.

Finally, it should be mentioned that at these
irradiance levels two-photon absorption of the second-
harmonic beam can increase the threshold for obser-
vation of instability. For a second-harmonic beam at
0.53 mm recent measurements of the two-photon ab-
sorption coefficient in bulk LiNbO3 indicated a value
of ba ­ 2.5 3 10212 myW .19 Thus at the suggested ir-
radiance of I ­ 3.3 GWycm2 the irradiance reduction
experienced in a crystal of length L ­ 1 cm is roughly
exps2LbaI d ­ 0.43, or 57%. Note that the absorption
occurs on the second-harmonic beam but not on the
counterpropagating fundamental. We expect that the
power requirements for experimental observations will
be increased by no more than a factor of 2–3.

In conclusion, we have demonstrated the presence of
transverse modulational instability of couterpropagat-
ing beams in a bulk x s2d medium without cavity feed-
back. By analogy with similar absolute instabilities
in media with a x s3d nonlinearity, we expect that the
nonlinear stage of the instability will result in the for-
mation of spatial patterns. Numerical estimates indi-
cate that the effect should be observable with currently
available quasi-phase-matched media.
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